Convex Relaxations of (0, 1)-Quadratic Programming
نویسندگان
چکیده
We consider three parametric relaxations of the 0-1 quadratic programming problem. These relaxations are to: quadratic maximization over simple box constraints, quadratic maximization over the sphere, and the maximum eigenvalue of a bordered matrix. When minimized over the parameter, each of the relaxations provides an upper bound on the original discrete problem. Moreover, these bounds are eeciently computable. Our main result is that, surprisingly, all three bounds are equal.
منابع مشابه
Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-a...
متن کاملCones of Matrices and Successive Convex Relaxations of Nonconvex Sets
Let F be a compact subset of the n-dimensional Euclidean space Rn represented by (finitely or infinitely many) quadratic inequalities. We propose two methods, one based on successive semidefinite programming (SDP) relaxations and the other on successive linear programming (LP) relaxations. Each of our methods generates a sequence of compact convex subsets Ck (k = 1, 2, . . . ) of Rn such that (...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملSecond-Order Cone Relaxations for Binary Quadratic Polynomial Programs
Several types of relaxations for binary quadratic polynomial programs can be obtained using linear, secondorder cone, or semidefinite techniques. In this paper, we propose a general framework to construct conic relaxations for binary quadratic polynomial programs based on polynomial programming. Using our framework, we re-derive previous relaxation schemes and provide new ones. In particular, w...
متن کاملDisjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and nonconvex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the liftand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 20 شماره
صفحات -
تاریخ انتشار 1995